Long-Term Effect of Decompressive Craniectomy on Intracranial Pressure

Lilja-Cyron A, Andresen M, Kelsen J, Andreasen TH, Fugleholm K & Juhler M

This paper describes how ICP decreases to negative values in long-term follow-up after craniectomy, and how we notice that normal postural ICP regulation is lost in this scenario.


Decompressive craniectomy (DC) is used in cases of severe intracranial hypertension or impending intracranial herniation. DC effectively lowers intracranial pressure (ICP) but carries a risk of severe complications related to abnormal ICP and/or cerebrospinal fluid (CSF) circulation, eg, hygroma formation, hydrocephalus, and “syndrome of the trephined.”


To study the long-term effect of DC on ICP, postural ICP regulation, and intracranial pulse wave amplitude (PWA).


Prospective observational study including patients undergoing DC during a 12-mo period. Telemetric ICP sensors (Neurovent-P-tel; Raumedic, Helmbrechts, Germany) were implanted in all patients. Following discharge from the neuro intensive care unit (NICU), scheduled weekly ICP monitoring sessions were performed during the rehabilitation phase.


A total of 16 patients (traumatic brain injury: 7, stroke: 9) were included (median age: 55 yr, range: 19-71 yr). Median time from NICU discharge to cranioplasty was 48 d (range: 16-98 d) and during this period, mean ICP gradually decreased from 7.8 ± 2.0 mm Hg to -1.8 ± 3.3 mm Hg (P = .02). The most pronounced decrease occurred during the first month. Normal postural ICP change was abolished after DC for the entire follow-up period, ie, there was no difference between ICP in supine and sitting position (P = .67). PWA was markedly reduced and decreased from initially 1.2 ± 0.7 mm Hg to 0.4 ± 0.3 mm Hg (P = .05).


Following NICU discharge, ICP decreases to negative values within 4 wk, normal postural ICP regulation is lost and intracranial PWA is diminished significantly. These abnormalities might have implications for intracranial fluid movements (e.g., CSF and/or glymphatic flow) following DC and warrants further investigations.

Read the full paper in Neurosurgery (click here).